Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Control Release ; 359: 1-11, 2023 07.
Article in English | MEDLINE | ID: covidwho-20242830

ABSTRACT

Data show a decrease in the risk of hospitalization and death from COVID-19. To date, global vaccinations for SARS-CoV-2 protections are underway, but additional treatments are urgently needed to prevent and cure infection among naïve and even vaccinated people. Neutralizing monoclonal antibodies are very promising for prophylaxis and therapy of SARS-CoV-2 infections. However, traditional large-scale methods of producing such antibodies are slow, extremely expensive and possess a high risk of contamination with viruses, prions, oncogenic DNA and other pollutants. The present study is aimed at developing an approach of producing monoclonal antibodies (mAbs) against SARS-CoV-2 spike (S) protein in plant systems which offers unique advantages, such as the lack of human and animal pathogens or bacterial toxins, relatively low-cost manufacturing, and ease of production scale-up. We selected a single N-terminal domain functional camelid-derived heavy (H)-chain antibody fragments (VHH, AKA nanobodies) targeted to receptor binding domain of SARS-CoV-2 spike protein and developed methods of their rapid production using transgenic plants and plant cell suspensions. Isolated and purified plant-derived VHH antibodies were compared with mAbs produced in traditional mammalian and bacterial expression systems. It was found that plant generated VHH using the proposed methods of transformation and purification possess the ability to bind to SARS-CoV-2 spike protein comparable to that of monoclonal antibodies derived from bacterial and mammalian cell cultures. The results of the present studies confirm the visibility of producing monoclonal single-chain antibodies with a high ability to bind the targeted COVID-19 spike protein in plant systems within a relatively shorter time span and at a lower cost when compared with traditional methods. Moreover, similar plant biotechnology approaches can be used for producing monoclonal neutralizing antibodies against other types of viruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Animals , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Mammals/metabolism
2.
FASEB J ; 37(6): e22973, 2023 06.
Article in English | MEDLINE | ID: covidwho-2313274

ABSTRACT

SARS-CoV-2 is the etiological agent of the COVID-19 pandemic. Antibody-based therapeutics targeting the spike protein, specifically the S1 subunit or the receptor binding domain (RBD) of SARS-CoV-2, have gained attention due to their clinical efficacy in treating patients diagnosed with COVID-19. An alternative to conventional antibody therapeutics is the use of shark new antigen variable receptor domain (VNAR ) antibodies. VNAR s are small (<15 kDa) and can reach deep into the pockets or grooves of the target antigen. Here, we have isolated 53 VNAR s that bind to the S2 subunit by phage panning from a naïve nurse shark VNAR phage display library constructed in our laboratory. Among those binders, S2A9 showed the best neutralization activity against the original pseudotyped SARS-CoV-2 virus. Several binders, including S2A9, showed cross-reactivity against S2 subunits from other ß coronaviruses. Furthermore, S2A9 showed neutralization activity against all variants of concern (VOCs) from alpha to omicron (including BA1, BA2, BA4, and BA5) in both pseudovirus and live virus neutralization assays. Our findings suggest that S2A9 could be a promising lead molecule for the development of broadly neutralizing antibodies against SARS-CoV-2 and emerging variants. The nurse shark VNAR phage library offers a novel platform that can be used to rapidly isolate single-domain antibodies against emerging viral pathogens.


Subject(s)
Bacteriophages , COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Pandemics , Antibodies , Antibodies, Viral , Antibodies, Neutralizing
3.
Fish Shellfish Immunol ; 138: 108807, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2316095

ABSTRACT

The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of alternative antibody formats such as single-domain antibodies. In this study, we identified variable new antigen receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded houndshark (Triakis scyllium) with recombinant wild-type RBD. Notably, the CoV2NAR-1 clone showed high binding affinities in the nanomolar range to various RBDs and demonstrated neutralizing activity against SARS-CoV-2 pseudoviruses. These results highlight the potential of the banded houndshark as an animal model for the development of VNAR-based therapeutics or diagnostics against future pandemics.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Animals , SARS-CoV-2/metabolism , Antibodies, Viral , Pandemics , Antibodies, Neutralizing
4.
Bulletin of Russian State Medical University ; 2023(1):12-20, 2023.
Article in English | EMBASE | ID: covidwho-2285740

ABSTRACT

Several COVID-19 vaccines have been developed in the last three years using various tecnhiques. Multiple virus-neutralizing antibodies against SARS-CoV-2 have been also obtained to combat the pandemic. However, the use of these medications for prevention and potential treatment faces significant challenges due to the emergence of new mutant virus variants, both more contagious and escaping neutralization by the immune system, that is why it is necessary to continuously renew the vaccines and develop new therapeutic antibodies. The study was aimed to use the technology of generating single-domain antibodies (nanobodies) to target the surface spike (S) protein RBD conserved epitope of the broad spectrum of SARS-CoV-2 variants. Recombinant proteins that corresponded to RBDs of three important SARS-SoV-2 strains and the full-length S protein (Wuhan) were used as antigens for immunization of a camel in order to induce production of appropriate antibodies and/or as immobilized proteins for further cross selection of the nanobody clones with pre-set specificity by the phage display. A nanobody capable of effectively recognizing the conservative region in the S protein RBDs of the broad spectrum of pandemic SARS-CoV-2 variants, including Omicron, was selected from the generated immune library. Along with conventional use in immunoassays and diagnosis, the generated nanobody can be potentially used as a module for target-specific binding used to trap coronavirus in human upper airways during the development of novel combination antiviral drugs.Copyright © 2023 Pirogov Russian National Research Medical University. All rights reserved.

5.
Front Immunol ; 14: 1098302, 2023.
Article in English | MEDLINE | ID: covidwho-2275528

ABSTRACT

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Subject(s)
Botulinum Toxins, Type A , COVID-19 , Single-Domain Antibodies , Animals , Humans , Mice , Single-Domain Antibodies/genetics , Pandemics , Dose-Response Relationship, Drug
6.
Antibodies (Basel) ; 12(1)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2199672

ABSTRACT

Driven by necessity, the COVID-19 pandemic caused by SARS-CoV-2 has accelerated the development and implementation of new vaccine platforms and other viral therapeutics. Among these is the therapeutic use of antibodies including single-domain antibodies, in particular the camelid variable heavy-chain fragment (VHH). Such therapies can provide a critical interim intervention when vaccines have not yet been developed for an emerging virus. It is evident that an increasing number of different viruses are emerging and causing epidemics and pandemics with increasing frequency. It is therefore imperative that we capitalize on the experience and knowledge gained from combatting COVID-19 to be better prepared for the next pandemic.

7.
Cells ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2082270

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an infectious disease that has become a serious burden on global public health. This study screened and yielded specific nanobodies (Nbs) against SARS-CoV-2 spike protein receptor binding domain (RBD), following testing its basic characteristics. A nanobody phage library was established by immunizing a camel with RBD protein. After three rounds of panning, the positive colonies were screened by enzyme-linked immunosorbent assay (ELISA). By sequencing, four different sequences of nanobody gene fragments were selected. The four nanobody fusion proteins were expressed and purified, respectively. The specificity and affinity of the four nanobodies were identified by ELISA. Our results showed that an immune phage display library against SARS-CoV-2 has been successfully constructed with a library capacity of which was 4.7 × 108 CFU. The four purified nanobodies showed specific high-affinity binding SARS-CoV-2 S-RBD. Among these, the antigen binding affinity of Nb61 was more comparable to that of commercial rabbit anti-SARS-CoV-2 S-RBD antibodies. In sum, our study has obtained four nanobody strains against SARS-CoV-2 S-RBD with significant affinity and specificity, therefore laying an essential foundation for further research as well as the applications of diagnostic and therapeutic tools of SARS-CoV-2.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Humans , Rabbits , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing , SARS-CoV-2 , Camelus
8.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2071507

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 is the causal pathogen of coronavirus disease 2019 (COVID-19). The emergence of new variants with different mutational patterns has limited the therapeutic options available and complicated the development of effective neutralizing antibodies targeting the spike (S) protein. Variable New Antigen Receptors (VNARs) constitute a neutralizing antibody technology that has been introduced into the list of possible therapeutic options against SARS-CoV-2. The unique qualities of VNARs, such as high affinities for target molecules, capacity for paratope reformatting, and relatively high stability, make them attractive molecules to counteract the emerging SARS-CoV-2 variants. In this study, we characterized a VNAR antibody (SP240) that was isolated from a synthetic phage library of VNAR domains. In the phage display, a plasma with high antibody titers against SARS-CoV-2 was used to selectively displace the VNAR antibodies bound to the antigen SARS-CoV-2 receptor binding domain (RBD). In silico data suggested that the SP240 binding epitopes are located within the ACE2 binding interface. The neutralizing ability of SP240 was tested against live Delta and Omicron SARS-CoV-2 variants and was found to clear the infection of both variants in the lung cell line A549-ACE2-TMPRSS2. This study highlights the potential of VNARs to act as neutralizing antibodies against emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Neutralization Tests , Antibodies, Viral , Antibodies, Neutralizing , Epitopes
9.
Antibodies (Basel) ; 11(4)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071164

ABSTRACT

Single domain antibodies (sdAb) are the recombinant variable heavy domains derived from camelid heavy-chain antibodies. While they have binding affinities equivalent to conventional antibodies, sdAb are only one-tenth the size and possess numerous advantages such as excellent thermal stability with the ability to refold following denaturation, and inexpensive production in Escherichia coli or yeast. However, their small size does have drawbacks, one being that they can lose activity upon attachment or adsorption to surfaces, or may fail to adsorb efficiently, as they are highly soluble. This can make the transition from using conventional antibodies to sdAb nontrivial for assay development. Specifically, it is often necessary to re-optimize the protocols and tailor the recombinant sdAb through protein engineering to function efficiently in handheld assays, which currently are utilized for point of care testing and field applications. This work focuses on optimizing the integration of sdAb into rapid vertical flow assays. To achieve this goal, we engineered sdAb-based constructs and developed general protocols for the attachment of the sdAb to both gold nanoparticles and a support membrane. We achieved a limit of detection of 0.11 µg/mL for toxins staphylococcal enterotoxin B and ricin, both potential biothreat agents. Additionally, we demonstrated the ability to detect the nucleocapsid protein of SARS-CoV-2, a common target of antigen tests for COVID-19.

10.
Anal Biochem ; 657: 114871, 2022 11 15.
Article in English | MEDLINE | ID: covidwho-2060272

ABSTRACT

The field of antibody development is under pressure to meet rising demands for speed, cost-effectiveness, efficacy, reliability, and large-scale production. It is costly and time-consuming to immunize animals and build a single-domain antibody (sdAb) library for each target. Using the variable domain (VHH) of heavy-chain only antibodies (HcAbs) derived from blood samples of 75 non-immunized camelid animals (51 alpacas, 13 llamas, 11 Bactrian camels), and spleens from two Bactrian camels, a naïve sdAb library with extensive megadiversity and reusability was constructed. The library was evaluated using next-generation DNA sequencing (NGS) and was found to contain hundreds of billions of unique clones. To confirm the availability of target-specific VHHs, a naive library was screened for a variety of targets. At least two VHH candidates were extracted for each target using a 20-day selection pipeline. Some binders had ultrahigh potencies, with binding affinities in the nanomolar range. This naïve library, in particular, offers the possibility of acquiring unique antibodies targeting antigens of interest with low feasible dissociation constant (kD) without the time, effort, and price associated in producing antibodies in animals via antigen injection. Overall, the study shows that the megadiverse naïve library provides a rapid, adaptable, and easy platform for antibody creation, emphasizing its therapeutic and diagnostic implications.


Subject(s)
Camelids, New World , Single-Domain Antibodies , Animals , Antibodies/genetics , Antigens , Camelus/genetics , Gene Library , Immunoglobulin Heavy Chains , Reproducibility of Results
11.
Biomed Eng Adv ; 4: 100054, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031157

ABSTRACT

With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.

12.
Front Pharmacol ; 13: 963978, 2022.
Article in English | MEDLINE | ID: covidwho-2009897

ABSTRACT

Infectious diseases, caused by pathogenic microorganisms, are capable of affecting crises. In addition to persistent infectious diseases such as malaria and dengue fever, the vicious outbreaks of infectious diseases such as Neocon, Ebola and SARS-CoV-2 in recent years have prompted the search for more efficient and convenient means for better diagnosis and treatment. Antibodies have attracted a lot of attention due to their good structural characteristics and applications. Nanobodies are the smallest functional single-domain antibodies known to be able to bind stably to antigens, with the advantages of high stability, high hydrophilicity, and easy expression and modification. They can directly target antigen epitopes or be constructed as multivalent nanobodies or nanobody fusion proteins to exert therapeutic effects. This paper focuses on the construction methods and potential functions of nanobodies, outlines the progress of their research, and highlights their various applications in human infectious diseases.

13.
Curr Protoc ; 2(6): e459, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1898638

ABSTRACT

Single-domain antibodies, including the antigen-binding variable domains of the shark immunoglobulin new antigen receptor and the camelid variable region of the heavy chain, are the smallest antigen recognition domains (∼15 kDa) and have unique characteristics compared to conventional antibodies. They are capable of binding epitopes that are hard to access for classical antibodies and can also be used for therapeutics or diagnostics or as modular building blocks for multi-domain constructs, antibody-drug conjugates, immunotoxins, or chimeric antigen receptor therapy. This article contains detailed procedures for the purification and validation of two single-domain antibodies (one shark and one camel), which bind to the S2 subunit of the SARS-CoV-2 spike protein, using both bacterial and mammalian cell expression systems. It provides a comprehensive reference for the production of single-domain antibodies with high yield, good quality, and purity. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol: Production of single-domain antibodies from Escherichia coli Alternate Protocol: Production of single-domain antibodies using the mammalian cell line Expi293F Support Protocol 1: Production and purification of single-domain antibodies on a small scale with the polymyxin B method Support Protocol 2: Validation of single-domain antibodies by ELISA.


Subject(s)
COVID-19 , Sharks , Single-Domain Antibodies , Animals , Antibodies , Camelus , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
14.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: covidwho-1869818

ABSTRACT

Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.


Subject(s)
Influenza, Human , RNA Virus Infections , Single-Domain Antibodies , Animals , Antiviral Agents/therapeutic use , Humans , Mice , Pandemics , RNA Virus Infections/drug therapy , Single-Domain Antibodies/chemistry
15.
Proc Natl Acad Sci U S A ; 119(18): e2201433119, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1815698

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Camelus , Humans , Mice , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics
16.
Cell ; 185(8): 1389-1401.e18, 2022 04 14.
Article in English | MEDLINE | ID: covidwho-1788017

ABSTRACT

The effectiveness of SARS-CoV-2 vaccines and therapeutic antibodies have been limited by the continuous emergence of viral variants and by the restricted diffusion of antibodies from circulation into the sites of respiratory virus infection. Here, we report the identification of two highly conserved regions on the Omicron variant receptor-binding domain recognized by broadly neutralizing antibodies. Furthermore, we generated a bispecific single-domain antibody that was able to simultaneously and synergistically bind these two regions on a single Omicron variant receptor-binding domain as revealed by cryo-EM structures. We demonstrated that this bispecific antibody can be effectively delivered to lung via inhalation administration and exhibits exquisite neutralization breadth and therapeutic efficacy in mouse models of SARS-CoV-2 infections. Importantly, this study also deciphered an uncommon and highly conserved cryptic epitope within the spike trimeric interface that may have implications for the design of broadly protective SARS-CoV-2 vaccines and therapeutics.


Subject(s)
COVID-19 Vaccines , Single-Domain Antibodies , Administration, Inhalation , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
17.
Int J Mol Sci ; 23(7)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1785734

ABSTRACT

VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.


Subject(s)
Camelids, New World , Immunoglobulin Heavy Chains , Amino Acid Sequence , Animals , Antibodies , Immunoglobulin Heavy Chains/chemistry , Models, Structural
18.
MAbs ; 14(1): 2047144, 2022.
Article in English | MEDLINE | ID: covidwho-1740685

ABSTRACT

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor-binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.Abbreviations: ACE2 - angiotensin converting enzyme 2BSA - buried surface areaCDR - complementary determining regionRBD - receptor binding domainRBM - receptor-binding motifSARS-CoV-2 - severe acute respiratory syndrome coronavirus 2.


Subject(s)
Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , COVID-19/immunology , Lung/pathology , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , Binding Sites/genetics , Broadly Neutralizing Antibodies/immunology , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , Nebulizers and Vaporizers , Protein Binding , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load
19.
FASEB J ; 35(11): e21970, 2021 11.
Article in English | MEDLINE | ID: covidwho-1462503

ABSTRACT

Single domain shark variable domain of new antigen receptor (VNAR) antibodies can offer a viable alternative to conventional Ig-based monoclonal antibodies in treating COVID-19 disease during the current pandemic. Here we report the identification of neutralizing single domain VNAR antibodies selected against the severe acute respiratory syndrome coronavirus 2 spike protein derived from the Wuhan variant using phage display. We identified 56 unique binding clones that exhibited high affinity and specificity to the spike protein. Of those, 10 showed an ability to block both the spike protein receptor binding domain from the Wuhan variant and the N501Y mutant from interacting with recombinant angiotensin-converting enzyme 2 (ACE2) receptor in vitro. In addition, three antibody clones retained in vitro blocking activity when the E484K spike protein mutant was used. The inhibitory property of the VNAR antibodies was further confirmed for all 10 antibody clones using ACE2 expressing cells with spike protein from the Wuhan variant. The viral neutralizing potential of the VNAR clones was also confirmed for the 10 antibodies tested using live Wuhan variant virus in in vitro cell infectivity assays. Single domain VNAR antibodies, due to their low complexity, small size, unique epitope recognition, and formatting flexibility, should be a useful adjunct to existing antibody approaches to treat COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Humans , Protein Binding , Sharks/immunology , Vero Cells
20.
J Biol Chem ; 297(4): 101202, 2021 10.
Article in English | MEDLINE | ID: covidwho-1428100

ABSTRACT

Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.


Subject(s)
Antigen-Antibody Complex , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Protein Binding , Protein Domains , Protein Stability , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sequence Alignment , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL